On the Static Diffie-Hellman Problem on Elliptic Curves over Extension Fields

نویسنده

  • Robert Granger
چکیده

We show that for any elliptic curve E(Fqn), if an adversary has access to a Static Diffie-Hellman Problem (Static DHP) oracle, then by making O(q 1 n+1 ) Static DHP oracle queries during an initial learning phase, for fixed n > 1 and q →∞ the adversary can solve any further instance of the Static DHP in heuristic time Õ(q 1 n+1 ). Our proposal also solves the Delayed Target DHP as defined by Freeman, and naturally extends to provide algorithms for solving the Delayed Target DLP, the One-More DHP and One-More DLP, as studied by Koblitz and Menezes in the context of Jacobians of hyperelliptic curves of small genus. We also argue that for any group in which index calculus can be effectively applied, the above problems have a natural relationship, and will always be easier than the DLP. While practical only for very small n, our algorithm reduces the security provided by the elliptic curves defined over Fp2 and Fp4 proposed by Galbraith, Lin and Scott at EUROCRYPT 2009, should they be used in any protocol where a user can be made to act as a proxy Static DHP oracle, or if used in protocols whose security is related to any of the above problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffie-Hellman type key exchange protocols based on isogenies

‎In this paper‎, ‎we propose some Diffie-Hellman type key exchange protocols using isogenies of elliptic curves‎. ‎The first method which uses the endomorphism ring of an ordinary elliptic curve $ E $‎, ‎is a straightforward generalization of elliptic curve Diffie-Hellman key exchange‎. ‎The method uses commutativity of the endomorphism ring $ End(E) $‎. ‎Then using dual isogenies‎, ‎we propose...

متن کامل

On the Bit Security of Elliptic Curve Diffie-Hellman

This paper gives the first bit security result for the elliptic curve Diffie–Hellman key exchange protocol for elliptic curves defined over prime fields. About 5/6 of the most significant bits of the x-coordinate of the Diffie–Hellman key are as hard to compute as the entire key. A similar result can be derived for the 5/6 lower bits. The paper also generalizes and improves the result for ellip...

متن کامل

Summation Polynomial Algorithms for Elliptic Curves in Characteristic Two

The paper is about the discrete logarithm problem for elliptic curves over characteristic 2 finite fields F2n of prime degree n. We consider practical issues about index calculus attacks using summation polynomials in this setting. The contributions of the paper include: a choice of variables for binary Edwards curves (invariant under the action of a relatively large group) to lower the degree ...

متن کامل

On the Bits of Elliptic Curve Diffie-Hellman Keys

We study the security of elliptic curve Diffie-Hellman secret keys in the presence of oracles that provide partial information on the value of the key. Unlike the corresponding problem for finite fields, little is known about this problem, and in the case of elliptic curves the difficulty of representing large point multiplications in an algebraic manner leads to new obstacles that are not pres...

متن کامل

The Decisional Diffie-Hellman Problem and the Uniform Boundedness Theorem∗

In this paper, we propose an algorithm to solve the Decisional Diffie-Hellman problem over finite fields, whose time complexity depends on the effective bound in the Uniform Boundedness Theorem (UBT). We show that curves which are defined over a number field of small degree but have a large torsion group over the number field have considerable cryptographic significance. If those curves exist a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010